Chapter 1

Purified Extracellular Vesicles

Ex Co Lyop. COLO:

HBM-COLO-30 Lot 250919 30μg

NTA: 3.3x10^{A11}

For research use In dia HansaBioMed Li

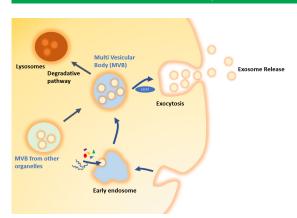
Summary chapter 1

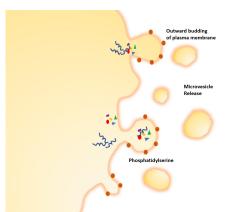
Introduction	4
Lyophilized small Extracellular Vesicles/Exosome	es 5
Lyophilized Plant Extracellular Vesicle-like Nano	particles 8
FLuoEVs: Lyophilized fluorescent Extracellular Ve	esicles 1
Lyophilized large Extracellular Vesicles/Microves	icles 13
Lyophilized Extracellular Vesicles on request	COLO (cell 1

30µg NTA: 3.3x10"

HBM-COLO?

For research Not for use in HansaBioMe For research Not for use in HansaBioMis JOug


For res



Introduction

Extracellular vesicles (EVs) are cell-derived nanoparticles, differing in their cellular origin, biogenesis mechanism, size and molecular content. Even though the nomenclature of EVs is still lacking consensus, the most prominent types of EVs are Exosomes, shedding Microvesicles (MVs) and Apoptotic Bodies. Recently, EVs have started to emerge as an important mean of intercellular communication and attract more attention as diagnostic, prognostic and therapeutic tool, due to their biomarker potential, virtue to represent physiological status of parent cell and ability to modulate functions of recipient cells.

Exosomes and Microvesicles, small and large EVs: a note on the nomenclature

Exosomes are EVs with a diameter ranging from 40-120 nm that are secreted by most eukaryotic and prokaryotic cells. Exosome release occurs either constitutively or upon induction, under both normal and pathological conditions. Both quantity and molecular composition of released exosomes depend on the physiological state of the parental cells.

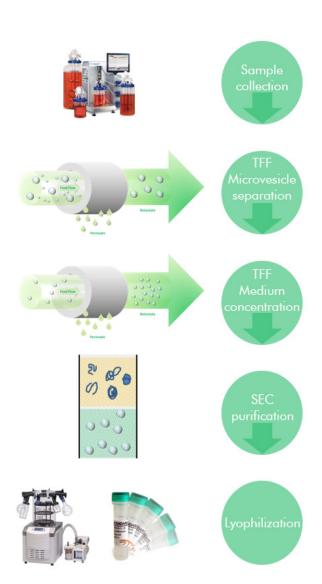
Microvesicles, also Ectosomes, are formed by the outward budding of the plasma membrane. Their dimensions are between 100 and 1000 nm. The release is promoted by the translocation of residues of phosphatidylserine on the external layer of the plasma membrane. During the formation process, MVs accumulate proteins and genetic material of the parental cells.

NOMENCLATURE OF PURIFIED EXTRACELLULAR VESICLES

The ISEV (International Society of Extracellular Vesicles) community defined the minimal information for studies of extracellular vesicles (MISEV guidelines*), calling Small EVs the vesicles with diameter between 30 - 120 nm and Large EVs the largest vesicles (> 120 nm). The current nomenclature was adopted because, although they differe in biogenesis, part of the Exosomes and Microvesicles secreted by the cells overlap in size and all the current available technologies do not allow to efficiently separate the two EV populations. Neverteless a wide part of the scientific community is still using the old nomenclature. In order to be conform with the MISEV guidelines, in this catalog we will use the following terms:

SMALL EVs (s-EVs)/EXOSOMES: vesicles with diameter comprised between 40 and 120 nm, mostly including Exosomes but also small microvesicles originated by the cell membrane.

LARGE EVs (I-EVs)/MICROVESICLES: vesicles larger than 150 nm diameter, mostly microvesicles originated by the cell membrane.

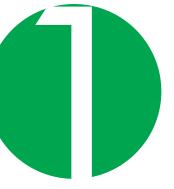

^{*} Witwer, K. W., Soekmadji, C., Hill, A. F., Wauben, M. H., Buzás, E. I., Di Vizio, D., ... & Lötvall, J. (2017). Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility.

Lyophilized small Extracellular Vesicles (s-EVs)/Exosomes

Purified s-EVs are obtained from a variety of biological sources: cell culture supernatant, human plasma, serum, urine. s-Evs are purified following a combination of tangential flow filtration (TFF) and size exclusion chromatography (SEC). Subsequently, isolated vesicles are quantified and validated for overall protein content, size distribution, concentration and EV specific marker expression.

Lyophilization is the ideal technique for long-term storage of EVs at 4° C. Stability of the physical properties, functionality and EV-specific marker expression of s-EVs is verified. s-EVs can be easily reconstituted by adding the appropriate volume of deionized water (MilliQ).

Applications


- Positive control for marker assessment.
- Control (spike-in) for EV quantification.
- OMICS analysis.
- Standardized positive controls for immunocapture performance evaluation.
- Flow cytometry.
- Electron microscopy.

Characteristics

- High purity.
- Size distribution: 50 120 nm.
- Long term stabiltiy at 4-8° C.
- Purified from biofluids collected from certified donor pools.
- Purified using combination of TFF and SEC.

Advantages

- Easy to reconstitute.
- Easy to ship and store $(+4^{\circ}C)$.
- Long term storage stability (36 months).
- Marker characterized
- Available from a large cell line bank (list of available cell line at page 16).

Lyophilized Small EVs/Exosomes from Human Biofluids

Cat Code	Contents	Packag	je size (#)	
	Lyophilized Small EVs/Exosomes from Human Plasma of healthy donors			
HBM-PEP100/#	100 μg (>1x10 ^ 10 particles)	2 vials	5 vials	
HBM-PEP30/#	30 μg (>1x10^8 particles)	2 vials	5 vials	
	Lyophilized Small EVs/Exosomes from Human Serum of healthy donors			
HBM-PES100/#	100 μg (>1x10^10 particles)	2 vials	5 vials	
HBM-PES30/#	30 μg (>1x10^8 particles)	2 vials	5 vials	
	Lyophilized Small EVs/Exosome from Human Urine of healthy donors			
HBM-PEU100/#	100 μg (>1x10 ^ 10 particles)	2 vials	5 vials	
HBM-PEP30/#	$30 \mu\mathrm{g}$ (>1x10^8 particles)	2 vials	5 vials	
	Source of human biofluids			
All the HBM-LS Extracellular Vesicles are produced by human biofluids of certified healthy donors with informed consent.				
Lyophilized Extracellular Vesicles from Human Biofluids, Bulk production				
Small EVs/Exosomes c	Small EVs/Exosomes can be produced in large bulks, on customer request. For information write to: info@hansabiomed.eu			

Lyophilized Small EVs/Exosomes from Cell Conditioned Media

HBM-LS provides Small EVs/Exosome Standards from 14 different cell line in stock, listed below, and, upon request, purified Exosome Standards from over 200 cell lines (see page 16).

Cat Code	Cell Line	Description	Particle content	Package	size (#)
	Lyophilized Small EVs/Exosomes from Human MSC				
HBM-MSC-100/#	Primary cell	human adipose tissue	$100 \mu g (> 1x10 ^{\smallfrown} 10 ^{\smallfrown} 10$	2 vials	5 vials
		Lyophilized Small EVs/Exosomes from HE	K293 cell line		
HBM-HEK-100/#	HEK293	Human embryonic kidney	$100 \mu g (> 1 \times 10^{10} particles)$	2 vials	5 vials
HBM-HEK-30/#	HEK293		30 μg (>1x10^8 particles)	2 vials	5 vials
	Lyoph	ilized Small EVs/Exosome from Human COI	LORECTAL cancer cells		
HBM-COLO-100/#	COLO1	Human Colorectal adenocarcinoma	$100 \mu g (> 1 \times 10^{10} particles)$	2 vials	5 vials
HBM-COLO-30/#	COLO1	Human Colorectal adenocarcinoma	30 μg (>1x10^8 particles)	2 vials	5 vials
HBM-HCT-100/#	HCT116	Human Colorectal adenocarcinoma	$100 \mu g (> 1 \times 10^{10} particles)$	2 vials	5 vials
HBM-HCT-100/# HCT116 Human Colorectal adenocarcinoma		30 μg (>1x10 ^ 8 particles)	2 vials	5 vials	
HBM-HT29-30/#	HT29	Human Colorectal adenocarcinoma	$100 \mu g (> 1 \times 10 ^{\smallfrown} 10 ^{\backprime} 10 ^{\backprime} 10)$	2 vials	5 vials
HBM-HT29-100/#	HT29	Human Colorectal adenocarcinoma	$30 \mu g \ (>1 \times 10^8 \ particles)$	2 vials	5 vials
Lyophilized Small EVs/Exosome from Human PROSTATE cancer cells					
HBM-PC3-100/#	PC3	Human Prostate adenocarcinoma	$100 \mu g (> 1x10 ^{\smallfrown} 10 ^{\smallfrown} 10$	2 vials	5 vials
HBM-PC3-30/#	PC3	Human Prostate adenocarcinoma	$30 \mu g (>1 \times 10^8 particles)$	2 vials	5 vials
HBM-LnCAP-100/#	LnCAP	Human Prostate adenocarcinoma	100 μg (>1x10 ^ 10 particles)	2 vials	5 vials
HBM-LnCAP-30/#	LnCAP	Human Prostate adenocarcinoma	$30 \mu g (>1 \times 10^8 particles)$	2 vials	5 vials

Cat Code	Cell Line	Description	Particle content	Package	size (#)
	Lyophilized Small EVs/Exosome from Human LUNG cancer cells				
HBM-A549-100/#	A549	Lung alveolar adenocarcinoma	100 μg (>1x10 ^ 10 particles)	2 vials	5 vials
HBM-A549-30/#	A549	Lung alveolar adenocarcinoma	30 μg (>1x10^8 particles)	2 vials	5 vials
HBM-NCI-100/#	NCI-H1975	Lung adenocarcinoma non-small cells	$100 \mu g (> 1 \times 10^{10} particles)$	2 vials	5 vials
HBM-NCI-30/#	NCI-H1975	Lung adenocarcinoma non-small cells	30 μg (>1x10^8 particles)	2 vials	5 vials
	Lyophilized Smo	all EVs/Exosome from human GLIOBLASTO	MA and NEUROBLASTOMA cells		
HBM-SK-100/#	SK-BR-3	Neuroblastoma, bone marrow metastasis	100 μg (>1x10 ^ 10 particles)	2 vials	5 vials
HBM-SK-30/#	SK-BR-3	Neuroblastoma, bone marrow metastasis	30 μg (>1x10^8 particles)	2 vials	5 vials
HBM-U87-100	U87 MG	Glioblastoma-astrocytoma	$100 \mu g (> 1 \times 10^{\circ} 10 particles)$	2 vials	5 vials
HBM-U87-30	U87 MG	Glioblastoma-astrocytoma	30 μg (>1x10^8 particles)	2 vials	5 vials
	Lyophil	ized Small EVs/Exosome from human chron	ic and acute LEUKEMIA		
HBM-K562-100/#	K562	Leukemia, chronic myelogenous	$100 \mu g (> 1 \times 10 ^{\smallfrown} 10 ^{\smallfrown} 10 ^{\backprime} 10)$	2 vials	5 vials
HBM-K562-30/#	K562	Leukemia, chronic myelogenous	30 μg (>1x10^8 particles)	2 vials	5 vials
	Ŀ	yophilized Small EVs/Exosome from MELAN	OMA cancer cells		
HBM-MM1-100/#	MM1	Human melanoma	$100 \mu g (> 1 \times 10^{\circ} 10 particles)$	2 vials	5 vials
HBM-MM1-3-/#	MM1	Human melanoma	$30 \mu g (>1 \times 10^8 particles)$	2 vials	5 vials
HBM-B16-100/#	B16F10	Mouse melanoma	$100 \mu g (> 1 \times 10 ^{\smallfrown} 10 ^{\circ} 10$ particles)	2 vials	5 vials
HBM-B16-30/#	B16F10	mouse melanoma	30 μg (>1x10 ^ 8 particles)	2 vials	5 vials
Cell line bank information					

Cell line bank information

Cell line source: All HBM-LS Extracellular Veiscles are produced using Cell Lines from the Cell Bank of the Interlab Cell Line Collection of the IRCCS AUO S.Martino IST, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy. To order Cell Lines refer directly to: www.iclc.it/indexpi.html.

Lyophilized Extracellular Vesicles storage

Lyophilized EVs can be stored at 4° C for up to 36 months. After reconstitution EVs can be stored at -20° C for up to one month or at -80° C for up to six months. Avoid freeze and thaw cycles.

Lyophilized Extracellular Vesicles from Cell Conditioned Media, Bulk production

Small EVs/Exosomes can be produced in large bulks, on customer request. For information write to: info@hansabiomed.eu

Green-Fluorescent labeled Small-EVs/Exosomes

Upon request all the listed EVs in catalog can be labeled with green fluorescent probes. For information about available probes and EV quantity contact us at info@hansabiomed.eu or visit our website (www.hansabiomed.eu).

Lyophilized Extracellular Vesicles like Nanoparticles from Plants (ELNs)

The presence of EV-like nanoparticles (ELNs) in plants was suggested around the late 1960s. However, only in the last decade began a growing interest on ELNs, in particular from food and cosmetic industry. HansaBioMed Life Sciences provides purified ELNs from different plant extracts, ELNs are purified by tangential flow filtration and characterized by particle size distribution and concentration, expression of TET8 marker (corresponding of mammalian CD63). Certificate of analysis reports the origin of the material.

Cat Code	Origin	Particle content	Package size (#)
	Lyophilized Plant derived Extracel	lular Vesicles like Nanoparticles (ELNs)	
HBM-GIN-100	Ginger root	100 μg (>1x10 ^ 10 particles)	1 vial
HBM-POT-100	Potato	100 μg (>1x10 ^ 10 particles)	1 vial
HBM-ONI-100	Onion	100 μg (>1x10 ^ 10 particles)	1 vial
HBM-GAR-100	Garlic	100 μg (>1x10 ^ 10 particles)	1 vial
HBM-SEA-100	Seaberries	100 μg (>1x10 ^ 10 particles)	1 vial
Custom production			

Plant EVs can be produced on customer request from different plants, roots, stems, leaves. For information write to info@hansabiomed.eu

References

Kruse, T., Schneider, S., Reger, L. N., Kampmann, M., & Reif, O. W. (2022). A novel approach for enumeration of extracellular vesicles from crude and purified cell culture samples. Engineering in Life Sciences.

Choi, D. Y., Park, J. N., Paek, S. H., Choi, S. C., & Paek, S. H. (2022). Detecting early-stage malignant melanoma using a calcium switch-enriched exosome subpopulation containing tumor markers as a sample. Biosensors and Bioelectronics, 198, 113828.

Guo, K., Li, Z., Win, A., Coreas, R., Adkins, G. B., Cui, X., ... & Zhong, W. (2021). Calibration-free analysis of surface proteins on single extracellular vesicles enabled by DNA nanostructure. Biosensors and Bioelectronics, 192, 113502.

Li, S., Zhu, L., Zhu, L., Aei, X., & Xu, W. (2021). A sandwich-based evanescent wave fluorescent biosensor for simple, real-time exosome detection. Biosensors and Bioelectronics, 113902.

Miljkovic-Licina, M., Arraud, N., Zahra, A. D., Ropraz, P., & Matthes, T. (2022). Quantification and Phenotypic Characterization of Extracellular Vesicles from Patients with Acute Myeloid and B-Cell Lymphoblastic Leukemia. Cancers, 14(1), 56.

El Ouahabi, O., Salim, H., Pero-Gascon, R., & Benavente, F. (2020). A simple method for the analysis of extracellular vesicles enriched for exosomes from human serum by capillary electrophoresis with ultraviolet diode array detection. Journal of Chromatography A, 461752.

Ridolfi, A., Brucale, M., Montis, C., Caselli, L., Paolini, L., Borup, A., ... & Nejsum, P. (2020). AFM-based high-throughput nanomechanical screening of single extracellular vesicles. Analytical chemistry, 92(15), 10274-10282.

Han, P., Lai, A., Salomon, C., & Ivanovski, S. (2020). Detection of Salivary Small Extracellular Vesicles Associated Inflammatory Cytokines Gene Methylation in Gingivitis. International journal of molecular sciences, 21(15), 5273.

Wei, P., Wu, F., Kang, B., Sun, X., Heskia, F., Pachot, A., ... & Li, D. (2020). Plasma extracellular vesicles detected by Single Molecule array technology as a liquid biopsy for colorectal cancer. Journal of extracellular vesicles, 9(1), 1809765.

Moyano, A., Serrano-Pertierra, E., Salvador, M., Martínez-García, J. C., Piñeiro, Y., Yañez-Vilar, S., ... & Blanco-López, M. C. (2020). Carbon-Coated Superparamagnetic Nanoflowers for Biosensors Based on Lateral Flow Immunoassays. Biosensors, 10(8), 80.

Parayath, N. N., Padmakumar, S., & Amiji, M. M. (2020). Extracellular vesicle-mediated nucleic acid transfer and reprogramming in the tumor microenvironment. Cancer Letters.

Kelwick, R. J., Webb, A. J., Wang, Y., Heliot, A., Allan, F., Emery, A. M., ... & Freemont, P. S. (2020). AL-PHA beads: bioplastic-based protease biosensors for global health applications. bioRxiv.

Mireles, M., Soule, C., Dehghani, M., & Gaborski, T. R. (2020). Use of nanosphere self-assembly to pattern nanoporous membranes for the study of extracellular vesicles. Nanoscale Advances.

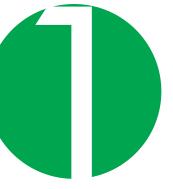
Shearn, A. I., Aday, S., Ben-Aicha, S., Carnell-Morris, P., Siupa, A., Angelini, G. D., ... & Biglino, G. (2020). Analysis of Neat Biofluids Obtained During Cardiac Surgery Using Nanoparticle Tracking Analysis: Methodological Considerations. Frontiers in Cell and Developmental Biology, 8.

Guo, S., Xu, J., Estell, A. P., Ivory, C. F., Du, D., Lin, Y., & Dong, W. J. (2020). based ITP technology: An application to specific cancer-derived exosome detection and analysis. Biosensors and Bioelectronics, 112292.

Lee, J., Kim, H., Heo, Y., Yoo, Y. K., Han, S. I., Kim, C., ... & Lee, J. H. (2020). Enhanced paper-based ELISA for simultaneous EVs/exosome isolation and detection using streptavidin agarose-based immobilization. Analyst, 145(1), 157-164.

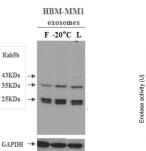
Messner, C. J., Premand, C., Gaiser, C., Kluser, T., Kübler, E., & Suter-Dick, L. (2020). Exosomal microRNAs Release as a Sensitive Marker for Drug-Induced Liver Injury In Vitro. Applied In Vitro Toxicology, 6(3), 77-89.

Drexel, R., Siupa, A., Carnell-Morris, P., Carboni, M., Sullivan, J., & Meier, F. (2020). Fast and Purification-Free Characterization of Bio-Nanoparticles in Biological Media by Electrical Asymmetrical Flow Field-Flow Fractionation Hyphenated with Multi-Angle Light Scattering and Nanoparticle Tracking Analysis Detection. Molecules, 25(20), 4703.

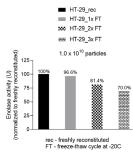

Martin-Gracia, B., Martin-Barreiro, A., Cuestas-Ayllon, C., Grazu, V., Line, A., Llorente, A., ... & Moros, M. (2020). Nanoparticle-based biosensors for detection of extracellular vesicles in liquid biopsies. Journal of Materials Chemistry B.

Lee, D., Wee, K. W., Kim, H., Han, S. I., Kwak, S., Yoon, D. S., & Lee, J. H. (2020). Based Preconcentration and Isolation of Microvesicles and Exosomes. JoVE (Journal of Visualized Experiments), (158), e61292.

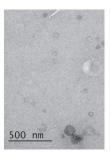
Kim, H., Lee, M. J., Bae, E. H., Ryu, J. S., Kaur, G., Kim, H. J., ... & Shigemoto-Kuroda, T. (2020). Comprehensive Molecular Profiles of Functionally Effective MSC-Derived Extracellular Vesicles in Immunomodulation. Molecular Therapy, 28(7), 1628-1644.


Dehghani, M., Gulvin, S. M., Flax, J., & Gaborski, T. R. (2020). Systematic Evaluation of PKH Labelling on Extracellular Vesicle Size by Nanoparticle Tracking Analysis. Scientific Reports, 10(1), 1-10.

Desgeorges, A., Hollerweger, J., Lassacher, T., Rohde, E., Helmbrecht, C., & Gimona, M. (2020). Differential fluorescence nanoparticle tracking analysis for enumeration of the extracellular vesicle content in mixed particulate solutions. Methods.


Lyophilization is the ideal method for preserving Extracellular Vesicles stability

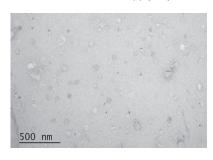
A- MARKER EXPRESSION


1. Fresh (F), frozen (-20°C) and lyophilized s-EVs/

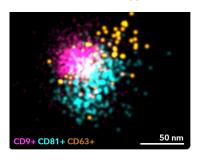
B- FUNCTIONAL PROPERTIES

2. Stability of enolase activity in lyophilized HT29 EVs (HBM-HT29).

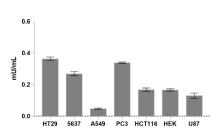
C- MORPHOLOGY

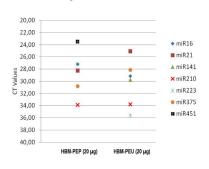


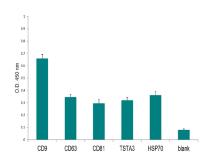
3. TEM image of lyophilized HCT116 EVS (HBM-HCT).

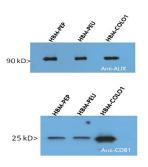

Lyophilization does not substantially affect EV particle size distribution or biomarker expression compared to other storage methods (Fig 1, 2, 3). Exosomes stored for over 3 months at -20° C or over 1 year at -80° C showed a complete different size distribution profile, probably due to EV aggregation.

Applications of lyophilized Extracellular Vesicles


Electron Microscopy (EM) and Immuno Electron Microscopy (IEM)

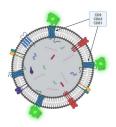

EV phenotyping by super resolution fluorescence microscopy


Activity assays: Acetylcholinesterase activity in lyophilized EVs


Profiling of EV associated RNAs

EV phenotyping by ELISA

EV marker analysis by WB



FLuoEVs: Purified EVs expressing fluorescent proteins

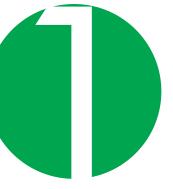
FLuoEVs are stably-fluorescent EVs expressing the flourescent protein EGFP (green), BFP (blue) or mCherry (Red) as fusion protein with tetraspanins CD9, CD81 and CD63. FLuoEVs demonstrated high stability of the fluorophores, they can be used for *in vitro* tracking studies or as reference material for analyzers of nanoparticles or for assay calibration.

FLuoEVs are extracellular vesicles purified by combination of Tangential Flow Filtration (TFF) and Size Exclusion Chromatography (SEC) from engineered cells able to express the fluorescent proteins as fusion protein with the tetraspanin CD9, CD63 or CD81.

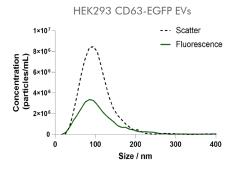
Cat Code	Cell origin	Fluorescent protein	Fluorescent particles/vial	
FLuoEVs: Purified EVs expressing fluorescent proteins				
HBM-HEK-EFGP63 HEK293 EGFP-CD63 > 1x10^9 / 1 vial				
HBM-HEK-EGFP9	HEK293	EGFP-CD9	> 1x10^9 / 1 vial	
HBM-HEK-EFGP81	HEK293	EGFP-CD81	> 1x10^9 / 1 vial	
Custom production				

FLuoEVs can be produced on customer request from different cell lines and different fluorescent proteins (mCHERRY/Red and BFP/Blue). For information write to info@hansabiomed.eu

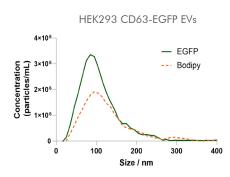
Applications


- Cell spike-in and in vitro tracking
- Control (spike-in) for EV quantification.
- Monitoring of EV uptake
- Standardized positive controls for EV analyzers.
- Flow cytometry.
- Fluorescence NTA.

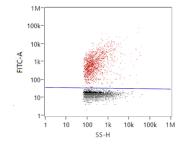
Characteristics

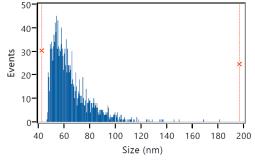

- Particle size distribution 50 120 nm.
- CD9, CD63, CD81 conjugated with EGFP (green) or mCHERRY (red). CD81 conjugated with BFP (blue).
- Store: 4 8 °C.
- Lyophilized. Reconstitution by addind deionized water.

Advantages


- Increrased fluorophore stability over membrane dyes.
- Easy storage and transport (4 8
 °C).
- Custom fluorescent EVs on request.

Performance for FLuoEVs in fluorescence-NTA (Zetaview analyzer, Particle Metrix)


FLuoEVs HEK293-CD63-EGFP analysis in scattered vs fluorescence mode (percentage of fluorescent partilces 40 - 60 %)



Comparison of FLuoEVs HEK293-CD63-EGFP and HEK293 EVs lebeled with the lipidic dye Bodipy.

Performance for FLuoEVs in flow cytometry (NanoAnalyzer, NanoFCM)

FLuoEVs HEK293-CD63-EGFP analysis by NanoAnalyzer NanoFCM (percentage of fluorescent partilces 60 - 80 %)

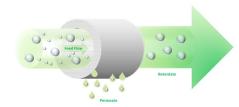
Applications

- Protein marker analysis using multiple techniques.
- Extraction and analysis of MVassociated nucleic acids.
- Positive controls for NTA performance evaluation.
- Flow cytometry.
- Electron microscopy.

Characteristics

- Highly pure.
- Size distribution: 150 300 nm.
- Isolated by tangential flow filtration.

Advantages


- Easy to reconstitute.
- Easy to ship and store (+4°C).
- Long-term storage stability (36 months).
- Available on request from a large cell line bank (cell line list at page 13).

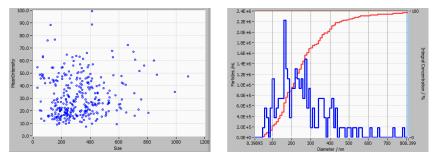
Lyophilized Large EVs/Microvesicles

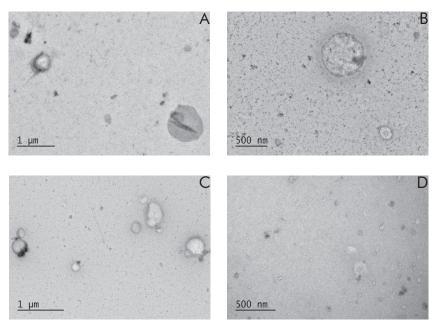
Purified large EVS (I-EVs) are obtained from cell conditioned media. EVs larger than 150 nm are separated by using tangential flow filtration (TFF). Isolated vesicles are quantified and validated for overall protein content, size distribution and particle number by NTA (Nanoparticles Tracking Analysis) with Zetaview analyzer (Particle Metrix).

Large EVs/Microvesicles from Cell Conditioned Media

HBM-LS provides lyophilized Microvesicles from 13 different cell line in stock, listed below, and, upon request, from over 200 cell lines (see pag 12).

Cell Line	Code	Size	
Lyophilized Lar	ge EVs/Microvesicles		
COLO1 Human colon carcinoma	HBM-mvCOLO-50	1 vials 50 μl	
MM1 Human melanoma	HBM-mvMM1-50	1 vials 50 μl	
U87 MG Human glioblastoma astrocytoma	HBM-mvU87-50	1 vials 50 μl	
SK-N-SH Human neuroblastoma	HBM-mvSK-50	1 vials 50 μl	
HCT116 Human colon carcinoma	HBM-mvHCT-50	1 vials 50 μl	
PC3 Human prostate adenocarcinoma grade IV	HBM-mvPC3-50	1 vials 50 μl	
A549 Human lung carcinoma	HBM-mvA549-50	1 vials 50 μl	
K562 Human pleural effusion, chronic leukemia	HBM-mvK562-50	1 vials 50 μl	
HEK293 Human embryonic kidney	HBM-mvHEK293-50	1 vials 50 μl	
B16F10 Mouse melanoma	HBM-mvB16-50	1 vials 50 μl	
Human Adipose Tissue MSC	HBM-mvMSC-50	1 vials 50 μl	
Lyophilized Extracellular Vesicles storage			


Lyophilized large EVs can be stored at 4°C for up to 36 months. After reconstitution EVs can be stored at -20°C for up to one month or at -80°C for up to $\,$ six months. Avoid freeze and thaw cycles.



Application of lyophilized large EVs/Microvesicles

Lyophilized Large EVs/Microvesicles have the same versatility of small EVs, being suitable for multiple applications and techniques. Compared to the s-EVs, I-EVs show bigger dimentions and different size distribution, as revealed by NTA analysis and electron microscopy (Fig 4 and 5).

4. Size distribution profiling and scattered plot of I-EVs, performed with the Zetaview (Particle Metrix).

5. Electron microscopy images of the Lyophilized I-EVs (A,B,C) and s-EVs (D).

Lyophilized Extracellular Vesicles on request

Small and large EVs from the cell lines listed below upon costomer request.

List of available Cell Lines for Extracellular Vesicle purification on request

Cell line bank information

Cell line source: All HBM-LS Extracellular Veiscles are produced using Cell Lines from the Cell Bank of the Interlab Cell Line Collection of the IRCCS AUO S.Martino IST, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy. To order Cell Lines refer directly to: www.iclc.it/indexpi.html.

Ordering information

Order by email to: orders@hansabiomed.eu

,		
Cell Line Name	Tissue	Tumor/Pathology Description
380	peripheral blood	leukemia, pre-B cell
1301	blood	leukemia, acute lymphoblastic, T cell
5637	bladder	carcinoma
8305C	thyroid	carcinoma, undifferentiated
A 2058	skin	melanoma, metastatic
A-172	-	glioblastoma
A-204	muscle	rhabdomyosarcoma
A2780	ovary	adenocarcinoma
A-498	kidney	adenocarcinoma
A-704	kidney	adenocarcinoma
ACHN	kidney	adenocarcinoma
ACN	-	neuroblastoma
BICR 18	larynx	squamous cell carcinoma
BT-549	breast	carcinoma, ductal
BV-173*	peripheral blood	leukemia, pre-B cell
BxPC-3	pancreas	adenocarcinoma
C33A	cervix	carcinoma
CA46	ascitic fluid	lymphoma, Burkitt
Caco-2	colon	adenocarcinoma
Caki-2	kidney	carcinoma
Calu-1	lung	carcinoma, epidermoid, grade III
CaSki	cervix	cervix carcinoma, epidermoid
CFPAC-1	pancreas	adenocarcinoma
CM-S/Tum	bone marrow	monocyte tumor
CM-S/un	bone marrow	monocyte tumor
COLO 205	colon	colorectal adenocarcinoma
COLO 320DMF	colon	adenocarcinoma
COLO 699N	lung, derived from pleural fluid	adenocarcinoma
COLO 741	colon	carcinoma, pelvic wall metastasis
COLO 800	subcutaneous nodule	melanoma
COLO 853	lymph node	melanoma
COLO 858	lymph node	melanoma

^{*} Epstein-Barr virus

^{**} Transformed by Epstein-Barr virus

^{***} type C, type B viruses


exosomics

Cell Line Name	Tissue	Tumor/Pathology Description
COR-L23	lung	carcinoma, large cell
DBTRG.05MG	brain	glioblastoma
DLD-1	colon	adenocarcinoma
DMS-79	lung, pleural effusion	carcinoma, small cell
DOHH2*	-	lymphoma, follicular, B cell
DU-145	prostate	carcinoma
FTC-133	thyroid	carcinoma, follicular
FTC-238	thyroid	carcinoma, follicular
G-361	skin	melanoma
GDM-1	peripheral blood	leukemia, acute myelomonocytic
GF-D8	peripheral blood	leukemia, acute myeloid
H9	lymphocyte	lymphoma
HCT-15	colon	colorectal adenocarcinoma
HCT-8	intestine, ileocecal	ileocecal adenocarcinoma
HECV	umbilical cord	-
HEL 92.1.7	-	erythroleukemia
HeLa	cervix	carcinoma, epitheloid
HeLa S3	cervix	carcinoma, epitheloid
H-EMC-SS	-	chondrosarcoma
Hep G2	liver	hepatocellular carcinoma
HFFF2	foreskin, fetal	fibroblast, fetal
HGC-27	stomach	carcinoma, undifferentiated
HL-60	peripheral blood	leukemia, promyelocytic
HOS	bone	osteosarcoma
Hs578T	breast	carcinoma
Hs913T	derived from metastasis to lung	fibrosarcoma
HT 1197	bladder	carcinoma
HT-1080	acetabulum	fibrosarcoma
HT-29	colon	adenocarcinoma, grade II
HuP-T3	pancreas	adenocarcinoma, ascitic fluid
HuP-T4	pancreas	adenocarcinoma, ascitic fluid
Hs913T	derived from metastasis to lung	fibrosarcoma
HT 1197	bladder	carcinoma
HT-1080	acetabulum	fibrosarcoma
HT-29	colon	adenocarcinoma, grade II
HuP-T3	pancreas	adenocarcinoma, ascitic fluid
HuP-T4	pancreas	adenocarcinoma, ascitic fluid
HUVEC	endothelium	umbelical vein endothelial cells
IMR-32	-	neuroblastoma
	-	neuroblastoma
IMR-5	-	
IMR-5	skin	melanoma
		melanoma melanoma

^{*} Epstein-Barr virus

^{**} Transformed by Epstein-Barr virus

^{***} type C, type B viruses

Cell Line Name	Tissue	Tumor/Pathology Description
IST-MELA 16	subcutaneous metastasis	melanoma, metastatic
IST-MES1	pleural effusion	mesothelioma
IST-MES2	pleural effusion	mesothelioma
IST-SL1	lung	carcinoma, small cell
KARPAS-422*	-	lymphoma, follicular, B cell
KYSE-30	oesophagus	carcinoma,squamous cell
LB4**	lymphocyte, B	paroxysmal nocturnal hemoglobinuria
LB-B7**	lymphocyte, B	paroxysmal nocturnal hemoglobinuria
LB-F9**	lymphocyte, B	paroxysmal nocturnal hemoglobinuria
LNCap.FGC	prostate	adenocarcinoma
LoVo	colon	adenocarcinoma
LS 180	colon	colorectal adenocarcinoma
M07e	peripheral blood	leukemia, acute megakaryoblastic
MCF7***	breast	adenocarcinoma
MDA-MB-415	breast	adenocarcinoma
MDA-MB-435S	breast	carcinoma, ductal
MDA-MB-436	mammary gland	adenocarcinoma
MDA-MB-453	breast	adenocarcinoma
MDA-MB-468	breast	adenocarcinoma
MeCo 05	skin	melanoma
MEG-01	bone marrow	leukemia, megakaryoblastic
MEGR 07	metastatic cutaneous nodule	melanoma
MeMo 05	lymph node, metastasis	melanoma
MEMOR 06	subcutaneous metastasis	malignant melanoma
MES-SA	uterus	sarcoma
MEWO	-	malignant melanoma
MG-63	-	osteosarcoma
MOLT-4	peripheral blood	leukemia, T cell
MONO-MAC-6	peripheral blood	leukemia,acute monocytic
MPP 89	pleural effusion	mesothelioma
MRC-5	lung, fetal	-
MSTO-211H	-	mesothelioma
NCI-H1650	lung	adenocarcinoma, bronchioalveolar carcnoma (smoker patient)
NCI-H1975	lung	adenocarcinoma, non-small cell (non-smoker patient)
NCI-H292	lung	carcinoma, mucoepidermoid
NCI-H727	lung	carcinoma, non-small cell
NT2-D1	testis	carcinoma, embryonal pluripotent
OCI-AML2	peripheral blood	leukemia, acute myeloid
PA-1	ovary	teratocarcinoma
PF-382	pleural effusion	leukemia, T cell
PSN1	pancreas	adenocarcinoma
RAJI		lymphoma, Burkitt
Rj2.2.5	_	lymphoma, Burkitt

^{*} Epstein-Barr virus ** Transformed by Epstein-Barr virus *** type C, type B viruses

exosomics

Cell Line Name	Tissue	Tumor/Pathology Description
RO82-W-1	thyroid	carcinoma, follicular
ROV-S**	bone marrow	lymphoblastoid, EBV transformed
RPMI 7932	skin	melanoma
Saos-2	bone	osteosarcoma
SH-SY5Y	bone marrow metastasis	neuroblastoma
SiHa	cervix	carcinoma, squamous cell
SK-BR-3	breast	adenocarcinoma
SK-HEP-1	liver	adenocarcinoma
SK-LU-1	lung	adenocarcinoma, grade III, poorly differentiated
SK-MEL-24	skin	melanoma
SK-MEL-28	skin	melanoma
SK-MEL-5	skin	melanoma
SK-MES-1	lung	carcinoma, squamous cell
SK-N-AS	-	neuroblastoma
SK-N-BE(2)	bone marrow	neuroblastoma
SK-N-BE(2)-C	bone marrow	neuroblastoma
SK-N-F1	bone marrow metastasis	neuroblastoma
SUP-T1	pleural effusion	lymphoma, lymphoblastic, T cell
SW1353	bone	chondrosarcoma
SW48	colon	adenocarcinoma, grade IV
SW480	colon	adenocarcinoma, grade III-IV
SW620	colon	adenocarcinoma, metastasis to lymph node
SW837	rectum	adenocarcinoma, grade IV
T47D	breast	carcinoma, ductal
T84	colon	carcinoma, metastasis to lung
TE671 Subline 2	-	rhabdomyosarcoma
TF-1	bone marrow	erythroleukemia
THP-1	peripheral blood	leukemia, acute monocytic
THP-1h	peripheral blood	leukemia, acute monocytic
THP-11	peripheral blood	leukemia, acute monocytic
U251 MG	-	glioblastoma-astrocytoma, grade III
U87 MG	brain	glioblastoma-astrocytoma
U87/DK	brain	glioblastoma, transfected with binase (ATP binding site 721), mutated de 2-7 EGFR
U87/WT	brain	glioblastoma, transfected with EGFR
U-937	pleural effusion	lymphoma, histiocytic
VA-ES-BJ	skin	sarcoma, epitheloid
WiDr	colon	colorectal adenocarcinoma
Y79	-	retinoblastoma

^{*} Epstein-Barr virus

^{**} Transformed by Epstein-Barr virus

^{***} type C, type B viruses